
Exercise Set 1

SE Modality in Logic and Language

Deadline for submission: 4 April 2018, 11:30am1

Please answer all of the following questions. Total of
33 Points:

1. 2 PointsUse Definition 1.1 (Handout Propositional Logic) to decide whether the following are well-
formed formulae. Explain your answers.

(a) ((p ⊃ q) ⊃ (¬q ⊃ ¬p))
(b) p ∧ ¬p ⊃ p

(c) A ⊃ (B ⊃ A)

(d) ⊥ ⊃ q

2. 2 PointsFill in the quotation marks where necessary to make the following sentences true:

(a) Wien is what Wien refers to.
(b) Consist of five words consists of several words.
(c) There are seven words in this sentence.
(d) Wien refers to Wien is a sentence about what Wien means.

3. 4 PointsCheck the truth of each of the following, using tableaux. If the inference is invalid, read
off a counter-model from the tree, and check directly that it makes the premises true and
the conclusion false:

(a) p ⊃ q, r ⊃ q ⊢C (p ∨ r) ⊃ q

(b) ⊢C ((p ⊃ q) ⊃ q) ⊃ q

4. 4 PointsShow that the truth value of ¬□A at a world is the same as that of ♢¬A. (Hint: Use the
clauses for □,♢, and ¬ of the definition of a valuation for a model of propositional modal
logic on Handout (2) Propositional Modal Logic I.)

5. 3 PointsCall a world blind if it sees no worlds. If a world w is blind, what type of formula is
vacuously true? Which is vacuously false?

6. Consider again the definition of validity in system K (Definition 3.4 on Handout (3)):

We say that a world w of model M(= ⟨W,R,J ⟩) models formula A just in case the given
formula is true at that world on that model, i.e. νM,w(A) = 1.

Let M be a model ⟨W,R,J ⟩. We say that a formulae A is true in M iff for every world w ∈ W ,
νM,w(A) = 1.

Using K (for Kripke) to refer to our basic modal logic, we say that an inference is valid in system
K iff every world of every model that models the premises also models the conclusion; i.e.

1You can submit your answers in person before class, or you can email me an electronic scan of your answers by
11:30am.



Σ ⊨K A iff for all worlds w ∈ W of all models ⟨W,R,J ⟩:
if νM,w(B) = 1 for all the premises B ∈ Σ, then νM,w(A) = 1

Exercise: 2 PointsRewrite the definition of validity in system K (‘an inference is valid in system
K iff …’) by using the notion of truth in model M (as defined) instead of the notion of a
world modeling a formula on the right-hand side of the biconditional. (Rewrite it in such
a way that it is equivalent to the definition as stated above.)

7. The formula □p ⊃ ♢p is not valid in system K (i.e. ⊭K □p ⊃ ♢p).

(a) 3 PointsFind a model M(= ⟨W,R,J ⟩) that invalidates □p ⊃ ♢p (i.e. a counter-model to
⊨K □p ⊃ ♢p). Draw a diagram of the model (cf. Priest 2008, §§2.3 and 2.4.8).
(Hint: Check §4.1(iv) of Handout (2) for a relevantly similar example.)

(b) 3 PointsDoes this fact about K make it a suitable logic for necessity? Why or why not?
(Answer in no more than 200 words.)

8. 10 PointsTest the following, using tableaux. Where the tableau does not close, use it to define a
counter-model, and draw this, as in Priest (2008, §2.4.8).

(a) ⊢K (□p ∧□q) ⊃ □(p ∧ q)

(b) ⊢K ♢(p ∧ q) ⊃ (♢p ∧ ♢q)
(c) □p,□¬q ⊢K □(p ⊃ q)

(d) ♢p,♢q ⊢K ♢(p ∧ q)



Exercise Set 2
SE Modality in Logic and Language

Deadline for submission: Thursday, 2 May 2019, 11:30am

Please answer all of the following questions.

1. (a) Describe a K-model in which ‘□p ⊃ ♢p’ is false.

(b) Describe a T-model in which ‘□p ⊃ □□p’ is false.

(c) Describe a D-model that is not a T-model.

(d) Describe a S4-model in which ‘♢p ⊃ □♢p’ is false.

(e) Describe a S4-model in which ‘♢□p ⊃ p’ is false.

(f) Describe a B-model in which ‘♢p ⊃ □♢p’ is false.

(g) Describe a S5-model in which ‘♢p ⊃ □p’ is false.

(h) Describe a B-model in which ‘□p ⊃ □□p’ is false.

2. Use tableaux to show that the following argument is derivable in T:

□(p ⊃ q),□(q ⊃ r),□(r ⊃ s),¬♢s ∴ ¬♢p

3. Give proofs using tableaux for the following wffs in S5:

(a) ♢♢p ⊃ ♢p
(b) ♢(p ∨ q) ≡ (♢p ∨ ♢q)

4. For each of the following formulas, determine whether it is a logical truth of T, S4,
and/or S5. Give countermodels when a formula is not a logical truth of a system,
tableaux proofs when it is. (Check each formula against all three systems. If the same
tableau proof can be given in two systems, you only need to write it down once and
state that it also holds in the other system.)

(a) □(p ⊃ □♢p)
(b) ♢(p ∨ q) ⊃ ♢p
(c) ♢□p ⊃ □p

(d) ♢□♢p ⊃ ♢p

5. Show by semantic reasoning that the following wff is a logical truth in K:
⊨K □(¬(p ⊃ q) ⊃ (p ∧ ¬q))

6. (a) Explain in your own words what makes a system of modal propositional logic
normal.

(b) When given two systems of normal modal propositional logic, how can you de-
termine whether one is an extension of the other?



Exercise Set 3

SE Modality in Logic and Language

Deadline for submission: Thursday, 23 May 2019, 3-4pm in my office, C0220

Please answer all of the following questions. Total of
34 Points:
————

1. 3 PointsExplain the difference between the extension and intension of an expression. Explain what
extensions and intensions are.

2. 5 PointsState and explain in your own words:

(a) What are the semantic types of the extension and intension of a sentence?

(b) Explain what an intensional operator is? Give an example of an intensional operator in
German (or your native language) and state its semantic entry.

3. 3 PointsConsider the lexical entry for ‘and’ in von Fintel & Heim (2011, p. 6):

(14a) JandKw,g = λu ∈Dt. λv ∈Dt. u = v = 1

Is this entry extensionally equivalent to conjunction in propositional logic? That is, given the
extensions of two sentences as inputs, does the function yield the same extension for the con-
junctive sentence as the conjunction junctor would given two truth values of inputting formulas?
Show why or why not. (Reminder: νJ (A ∧B) = 1 iff νJ (A) = 1 and νJ (B) = 1)

4. 4 PointsState the lexical entries for the following expressions, following the entries in (13a-c) in von
Fintel & Heim (2011, p. 6):

(a) ‘popular’
(b) ‘mayor’
(c) ‘go to’
(d) ‘like’ (the transitive verb, as used in ‘Jill likes Finn’)

5. 3 PointsGive lexical entries for the following attitude verbs, following the entry for ‘believe’ in von Fintel
& Heim (2011, (33) on p. 20):

(a) ‘assume’
(b) ‘hope’
(c) ‘doubt’

6. 4 PointsPossible-worlds analyses of attitude verbs have notorious problems with pairs like the following:

(1) Lisa believes that a triangle whose three sides are of equal length is equilateral.
(2) Lisa doesn’t believe that a triangle whose three sides are of equal length is equiangular.

(3) Cem knows that 2+2=4.
(4) Cem doesn’t know that π = 3.14159…

Can you explain what the problem here is? [Hint: Think of similarities and differences in
intension of the (simple and complex) expressions in the prejacents.]
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7. 5 PointsCome up with examples of epistemic, deontic, and circumstantial uses of the necessity verb have
to. Describe the set of worlds that constitutes the understood restrictor in each of your examples.
(This is exercise 3.1 in von Fintel & Heim, 2011, p. 37.)

8. 3 PointsLet us call an accessibility relation trivial if it makes every world accessible from every world.
R is trivial iff ∀w∀w′ : w′ ∈ R(w). What would the conversational background f have to be
like for the accessibility relation Rf to be trivial in this sense? (This is exercise 3.6 in von Fintel
& Heim, 2011, p. 42.)

9. 4 PointsKratzer argues that because of sentences like (104) (von Fintel & Heim, 2011, 59), modal auxil-
iaries like ‘must’ are sensitive to two context-dependent parameters (‘doubly relative modality’).

(104) John must pay a fine.

Provide another example sentence (including a context–cf. von Fintel & Heim (2011, 59-60),
state the modal flavours involved in modal base and ordering source as well as the domain of
quantification that results from the restrictions by modal base and ordering source.

References

von Fintel, K. & Heim, I. (2011). Intensional semantics. Unpublished Lecture Notes.
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Exercise Set 1 — Solutions

SE Modality in Logic and Language

Dr. Dirk Kindermann

May 9, 2019

1. Use Definition 1.1 (Handout Propositional Logic) to decide whether the following are well-formed
formulae. Explain your answers.

(a) ‘((p ⊃ q) ⊃ (¬q ⊃ ¬p))’ is a wff.

(b) ‘p ∧ ¬p ⊃ p’ is, strictly speaking, not a wff; in contrast, ‘(p ∧ ¬p) ⊃ p’ is a wff, and so are
‘p∧(¬p ⊃ p)’ and ‘p∧¬(p ⊃ p)’ (we assume the convention of dropping outermost brackets)

(c) ‘A ⊃ (B ⊃ A)’ is not a wff: ‘A’ and ‘B’ are metavariables, ranging over wffs; they are not
included in the (object) language according to Definition 1.1. For (c) to become a wff, the
metavariables have to be replaced either by lowercase letters ‘p′, ‘q′, . . . or by any other wff
in parentheses or fronted by a negation sign.

(d) ‘⊥ ⊃ q’ is not a wff in the language defined in Definition 1.1. (In other languages for
propositional logic, ‘⊥’ stands for the falsum, or absurdity (i.e., by definition, it assumes
the truth value false).

2. Fill in the quotes where necessary to make the following sentences true:

(a) Wien is what ‘Wien’ refers to.

(b) ‘Consist of five words’ consists of several words.

(c) There are seven words in this sentence.

(d) “Wien’ refers to Wien’ is a sentence about what ‘Wien’ means.

3. Check the truth of each of the following, using tableaux. If the inference is invalid, read off
a counter-model from the tree, and check directly that it makes the premises true and the
conclusion false:

(a) p ⊃ q, r ⊃ q `C (p ∨ r) ⊃ q
p ⊃ q

√

r ⊃ q
√

¬((p ∨ r) ⊃ q)
√

p ∨ r
√

¬q

¬p

p
×

r

¬r
×

q
×

q
×

We have shown that p ⊃ q, r ⊃ q `C (p ∨ r) ⊃ q.
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(b) `C ((p ⊃ q) ⊃ q) ⊃ q
¬(((p ⊃ q) ⊃ q) ⊃ q)

√

(p ⊃ q) ⊃ q
√

¬q

¬(p ⊃ q)
√

p
¬q
↑

q
×

There is an open branch on the tree. The inference is invalid: 0C ((p ⊃ q) ⊃ q) ⊃ q
Counterexample: ν(p) = 1, ν(q) = 0.

Check directly that it makes the premises true and the conclusion false:

((p ⊃ q) ⊃ q) ⊃ q
1 0 0 0

0
1

0

4. Show that the truth value of ¬�A at a world is the same as that of ♦¬A. (Hint: Use the
clauses for �,♦, and ¬ of the definition of a valuation for a model of propositional modal logic
on Handout (2) Propositional Modal Logic.)

Answer: We will need the following clauses of the definition of a valuation:

Definition 3.3 Where M(= 〈W,R,J 〉) is any model for modal propositional logic, the val-
uation for M, νM, is defined as the two-place function that assigns either 0 or 1 to each wff
relative to each member of W, subject to the following constraints, where α is any propositional
letter, A and B are any wffs, and w is any member of W:

νM,w(α) = JM,w(α)
νM,w(¬A) = 1 iff νM,w(A) = 0

...
νM,w(�A) = 1 iff νM,x(A) = 1 at all worlds x such that wRx
νM,w(♦A) = 1 iff νM,x(A) = 1 at some world x such that wRx

Now, take an arbitrary world w:

νM,w(¬�A) = 1 iff νM,w(�A) = 0 (by clause for ¬)
iff νM,x(A) = 0 for some world x s.t. wRx (by clause for �)
iff νM,x(¬A) = 1 for some world x s.t. wRx (by clause for ¬)
iff νM,w(♦¬A) = 1. (by clause for ♦)

Since w is an arbitrary world, the result holds for any world. (Cf. Priest (2008 §2.3.9) for the
proof that νM,w(�¬A) = 1 iff νM,w(¬♦A) = 1.)

5. Call a world blind if it sees no worlds. If a world w is blind, what type of formula is vacuously
true? Which is vacuously false?

Answer: If w sees no world, then �A is vacuously true at w. Given the definition of valuation,
�A is true at w (relative to model M) iff it is true at all worlds x such that wRx; but since
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there is no such world, it is vacuously true that the formula is true at all such worlds (cf. the
parallel to the semantics of the universal quantifier if we allow the domain of quantification to
be empty).

♦A is vacuously false at w. ♦A is true at a world w iff it is true at some accessible world – i.e.
iff νM,x(A) = 1 at some world x such that wRx. Since there is no such world, the formula is
false no matter what we put in the place of ‘A’.

6. Rewrite the definition of validity in system K (Definition 3.4 on Handout (2)) by using the
notion of truth in modelM (as defined) instead of the notion of a world modeling a formula on
the right-hand side of the biconditional. (Rewrite it in such a way that it is equivalent to the
definition as stated above.)

Answer: We write ‘Using K (for Kripke) to refer to our basic modal logic, we say that an inference
is valid in system K iff for every model M, whenever each premise is true in M, the conclusion
is true in M.’ The rest of Definition 3.4. remains as it is.

7. The formula �p ⊃ ♦p is not valid in system K (i.e. 2K �p ⊃ ♦p).

(a) Find a model M(= 〈W,R,J 〉) that invalidates �p ⊃ ♦p (i.e. a counter-model to
�K �p ⊃ ♦p). Draw a diagram of the model (cf. Priest 2008, §§2.3 and 2.4.8). (Hint:
Check §4.1(iv) of Handout III-1 for a relevantly similar example.)

Answer: Counter-model: 〈W,R,J 〉 with
W = {w1}
R = ∅ (R doesn’t relate w1 to any world)
J can be any function from propositional letters and worlds to truth values.

w1

¬(�p ⊃ ♦p)

�p

¬♦p

[νM,w1(�p) = 1 since it is trivially the case that at all worlds x accessible from w1, νM,x(p) =
1 (w1 accesses no world). But νM,w1(¬♦p) = 0 and hence νM,w1(♦p) = 0 because there
is no world x accessible from w1 s.t. νM,x(p) = 1. Thus, νM,w1(¬(�p ⊃ ♦p)) = 1 and
νM,w1(�p ⊃ ♦p) = 0 , as its antecedent is true at w1 and its consequent false.]

(b) Does this fact about K make it a suitable logic for necessity? Why or why not? (Answer
in no more than 200 words.)

Answer: On the familiar notion of necessity, something has to be possible (relative to our
world) for it to be necessarily the case. This makes K an unsuitable logic for necessity.
It is too weak – a stronger logic on which �p ⊃ ♦p is valid is needed.) For instance, if
it is necessary that every mammal has biological parents, it should also be possible for
all mammals to biological parents. Something seems to be going wrong if someone says
‘Mammals must have biological parents, although mice cannot have biological parents.’

8. Test the following, using tableaux. Where the tableau does not close, use it to define a counter-
model, and draw this, as in Priest (2008, §2.4.8).

(a) `K (�p ∧�q) ⊃ �(p ∧ q)
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¬((�p ∧�q) ⊃ �(p ∧ q)) , 0

↓
�p ∧�q , 0

√

¬�(p ∧ q) , 0
√

↓
♦¬(p ∧ q) , 0

√

↓
0r1

¬(p ∧ q) , 1
√

↓
�p , 0

�q , 0

↓
p , 1

↓
q , 1

↙ ↘
¬p , 1 ¬q , 1

× ×

So `K (�p ∧�q) ⊃ �(p ∧ q)

(b) `K ♦(p ∧ q) ⊃ (♦p ∧ ♦q)

¬(♦(p ∧ q) ⊃ (♦p ∧ ♦q)) , 0
√

♦(p ∧ q) , 0
√

¬(♦p ∧ ♦q) , 0
√

↓
0r1

p ∧ q , 1
√

↓
p , 1

q , 1

↙ ↘
¬♦p , 0

√
¬♦q , 0

√

↓ ↓
�¬p , 0 �¬q , 0

↓ ↓
¬p , 1 ¬q , 1

× ×

So `K ♦(p ∧ q) ⊃ (♦p ∧ ♦q)
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(c) �p,�¬q `K �(p ⊃ q)

�p , 0

�¬q , 0

¬�(p ⊃ q) , 0
√

↓
♦¬(p ⊃ q) , 0

√

↓
0r1

¬(p ⊃ q) , 1
√

↓
p , 1

¬q , 1

↓
p , 1

↓
¬q , 1

↑

So �p,�¬q 0K �(p ⊃ q)

Counter-model: 〈W, R, J〉 s.t.
W = {w0, w1}
R = {〈w0, w1〉}

J (p, w1) = 1,J (q, w1) = 0

w0 −→ w1

p
¬q

(d) ♦p,♦q `K ♦(p ∧ q)

♦p , 0
√

♦q , 0
√

¬♦(p ∧ q) , 0
√

↓
�¬(p ∧ q) , 0 /1/2

↓
0r1

p , 1

↓
¬(p ∧ q) , 1

√

↙ ↘
¬p , 1 ¬q , 1

× ↓
0r2
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q , 2

↓
¬(p ∧ q) , 2

√

↙ ↘
¬p , 2 ¬q , 2

↑ ×

So ♦p,♦q 0K ♦(p ∧ q)

Counter-model: 〈W, R, J〉 s.t.
W = {w0, w1, w2}
R = {〈w0, w1〉, 〈w0, w2〉}
J (p, w1) = 1,J (q, w1) = 0,J (p, w2) = 0,J (q, w2) = 1

w1 p,¬q
↗

w0

↘
w2 ¬p, q

6



Exercise Set 2 — Solutions
SE Modality in Logic and Language

Dr. Dirk Kindermann

June 18, 2019

1. (a) Describe a K-model in which ‘□p ⊃ ♢p’ is false. Each of
a)–h):
1 PointM = ⟨W ,R,J ⟩, where

W = {w1},
R = ∅

(b) Describe a T-model in which ‘□p ⊃ □□p’ is false.

M = ⟨W ,R,J ⟩, where
W = {w1, w2, w3},
R = {⟨w1, w1⟩, ⟨w2, w2⟩, ⟨w3, w3⟩, ⟨w1, w2⟩, ⟨w2, w3⟩},
J (p, w1) = 1, J (p, w2) = 1, J (p, w3) = 0

(c) Describe a D-model that is not a T-model.

Any model whose accessibility relation R is serial but not reflexive is a D-model but not a
T-model: ⌜□A ⊃ A⌝ is true on every T-model but not on the described D-model.

Example: ‘□p ⊃ p’ is false on the D-model M = ⟨W ,R,J ⟩, where
W = {w1, w2}
R = {⟨w1, w2⟩, ⟨w2, w1⟩},
J (p, w1) = 0, J (p, w2) = 1

(d) Describe a S4-model in which ‘♢p ⊃ □♢p’ is false.

M = ⟨W ,R,J ⟩, where
W = {w1, w2},
R = {⟨w1, w1⟩, ⟨w1, w2⟩, ⟨w2, w2⟩},
J (p, w1) = 1, J (p, w2) = 0

(e) Describe a S4-model in which ‘♢□p ⊃ p’ is false.

M = ⟨W ,R,J ⟩, where
W = {w1, w2},
R = {⟨w1, w1⟩, ⟨w1, w2⟩, ⟨w2, w2⟩},
J (p, w1) = 0, J (p, w2) = 1

(f) Describe a B-model in which ‘♢p ⊃ □♢p’ is false.

M = ⟨W ,R,J ⟩, where

1



W = {w1, w2, w3},
R = {⟨w1, w1⟩, ⟨w2, w2⟩, ⟨w3, w3⟩, ⟨w1, w2⟩, ⟨w2, w1⟩, ⟨w1, w3⟩, ⟨w3, w1⟩},
J (p, w1) = 0, J (p, w2) = 0, J (p, w3) = 1

(g) Describe a S5-model in which ‘♢p ⊃ □p’ is false.

M = ⟨W ,R,J ⟩, where

W = {w1, w2},
R = {⟨w1, w1⟩, ⟨w2, w2⟩, ⟨w1, w2⟩, ⟨w2, w1⟩},
J (p, w1) = 1, J (p, w2) = 0

(h) Describe a B-model in which ‘□p ⊃ □□p’ is false.

M = ⟨W ,R,J ⟩, where

W = {w1, w2, w3},
R = {⟨w1, w1⟩, ⟨w2, w2⟩, ⟨w3, w3⟩, ⟨w1, w2⟩, ⟨w2, w1⟩, ⟨w2, w3⟩, ⟨w3, w2⟩},
J (p, w1) = 1, J (p, w2) = 1, J (p, w3) = 0

2. Use tableaux to show that the following argument is derivable in T:

□(p ⊃ q),□(q ⊃ r),□(r ⊃ s),¬♢s ∴ ¬♢p 2,5 Points

□(p ⊃ q), 0/1

□(q ⊃ r), 0/1

□(r ⊃ s), 0/1

¬♢s, 0✓
¬¬♢p, 0

↓
□¬s, 0/1

↓
♢p, 0
↓

0r1

p, 1

↓
¬s, 1
↓

p ⊃ q, 1✓
↙ ↘

¬p, 1 q, 1

x ↓
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q ⊃ r, 1✓
↙ ↘

¬q, 1 r, 1

x ↓
r ⊃ s, 1✓

↙ ↘
¬r, 1 s, 1

x x

So □(p ⊃ q),□(q ⊃ r),□(r ⊃ s),¬♢s ⊢T ¬♢p

3. Give proofs using tableaux for the following wffs in S5:

(a) ♢♢p ⊃ ♢p 2,5 Points

¬(♢♢p ⊃ ♢p), 0 ✓
↓

♢♢p, 0 ✓
¬♢p, 0

↓
□¬p, 0/2

↓
0r1

♢p, 1 ✓
↓

1r2

p, 2

↓
0r2

¬p, 2
x
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(b) ♢(p ∨ q) ≡ (♢p ∨ ♢q) 2,5 Points

¬(♢(p ∨ q) ≡ (♢p ∨ ♢q)), 0✓
↙ ↘

♢(p ∨ q), 0✓ ¬♢(p ∨ q), 0✓
¬(♢p ∨ ♢q), 0✓ ♢p ∨ ♢q, 0✓

↓ ↓
0r1 □¬(p ∨ q), 0

p ∨ q, 1✓ ↙ ↘
↓ ♢p, 0✓ ♢q, 0✓

¬♢p, 0✓ ↓ ↓
¬♢q, 0✓ 0r1 0r1
↓ p, 1 q, 1

□¬p, 0/1 ↓ ↓
↓ ¬(p ∨ q), 1✓ ¬(p ∨ q), 1✓

□¬q, 0/1 ↓ ↓
↓ ¬p, 1 ¬p, 1

¬p, 1 ¬q, 1 ¬q, 1
↓ x x

¬q, 1
↙ ↘

p, 1 q, 1

x x

4. For each of the following formulas, determine whether it is a logical truth of T, S4, and/or S5.
Give countermodels when a formula is not a logical truth of a system, tableaux proofs when it
is. (Check each formula against all three systems. If the same tableau proof can be given in two
systems, you only need to write it down once and state that it also holds in the other system.)

(a) □(p ⊃ □♢p) Each of
a)–d):
2,5 Points

• T and S4: Not a logical truth
Countermodel for both: M = ⟨W ,R,J ⟩ and w1, where
W = {w1, w2, w3}
R = {⟨w1, w1⟩, ⟨w2, w2⟩, ⟨w3, w3⟩, ⟨w1, w2⟩, ⟨w1, w3⟩, ⟨w2, w3⟩}
(R is reflexive and serial and transitive, but asymmetric.)
J (p, w1) = 1, J (p, w2) = 1, J (p, w3) = 0

• S5: Logical Truth

¬□(p ⊃ □♢p), 0 ✓
↓

♢¬(p ⊃ □♢p), 0 ✓
↓

0r1
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↓
¬(p ⊃ □♢p), 1 ✓

↓
p, 1

¬□♢p, 1 ✓
↓

♢¬♢p, 1 ✓
↓

1r2
↓

¬♢p, 2 ✓
↓

□¬p, 2 /1
↓

0r0, 1r1, 2r2, 1r0, 2r1, 0r2, 2r0
↓

¬p, 1
x

(b) ♢(p ∨ q) ⊃ ♢p
It’s not a logical truth in either of T, S4, and S5.

Countermodel: M = ⟨W ,R,J ⟩, where

W = {w1, w2}
R = {⟨w1, w1⟩, ⟨w2, w2⟩, ⟨w1, w2⟩, ⟨w2, w1⟩}
J (p, w1) = 0, J (p, w2) = 0, J (q, w2) = 1

OR

M = ⟨W ,R,J ⟩, where

W = {w1}
R = {⟨w1, w1⟩}
J (p, w1) = 0, J (q, w1) = 1

(c) ♢□p ⊃ □p

• T and S4: Not a logical truth
Countermodel: M = ⟨W ,R,J ⟩, where
W = {w1, w2}
R = {⟨w1, w1⟩, ⟨w2, w2⟩, ⟨w1, w2⟩}
J (p, w1) = 0, J (p, w2) = 1
The countermodel is serial, reflexive and transitive (but not symmetric, thus not a S5
model).

• S5: It’s a logical truth.

¬(♢□p ⊃ □p), 0✓
↓

♢□p, 0✓
¬□p, 0✓

↓
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♢¬p, 0✓
↓

0r1
□p, 1/2

↓
0r2
¬p, 2
↓

0r0, 1r1, 2r2, 1r2, 2r1
↓
p, 2
x

(d) ♢□♢p ⊃ ♢p
• T: It’s not a logical truth

Countermodel: M = ⟨W ,R,J ⟩, where
W = {w1, w2, w3}
R = {⟨w1, w1⟩, ⟨w2, w2⟩, ⟨w3, w3⟩, ⟨w1, w2⟩, ⟨w2, w3⟩}
J (p, w1) = 0, J (p, w2) = 0, J (p, w3) = 1
(The countermodel is serial and reflexive, but not transitive.)

• S4 and S5: It’s a logical truth

¬(♢□♢p ⊃ ♢p), 0✓
↓

♢□♢p, 0✓
¬♢p, 0✓

↓
□¬p, 0/2

↓
0r1

□♢p, 1/1
↓

1r1
↓

♢p, 1✓
↓

1r2
p, 2
↓

0r2
¬p, 2
x

5. Show by semantic reasoning that the following wff is a logical truth in K: 3,5 Points

⊨K □(¬(p ⊃ q) ⊃ (p ∧ ¬q))
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Let w0 be an arbitrary world of any K-model M.

The proof shows by reductio that □(¬(p ⊃ q) ⊃ (p ∧ ¬q)) is true at w0 in M. Since w0 and
M are arbitrary, the proof effectively shows that □(¬(p ⊃ q) ⊃ (p∧¬q)) is true at every world
of every K-model, hence that it is a logical truth.

Assumption for reductio: νM,w0(¬□(¬(p ⊃ q) ⊃ (p ∧ ¬q))) = 1.

In the following, each step is justified by a clause of Definition 3.3 on Handout 2 of valuation ν.

νM,w0(¬□(¬(p ⊃ q) ⊃ (p ∧ ¬q))) = 1 iff νM,w0(□(¬(p ⊃ q) ⊃ (p ∧ ¬q))) = 0
iff ∃w1 s.t. w0Rw1 and νM,w1(¬(p ⊃ q) ⊃ (p ∧

¬q)) = 0
iff νM,w1(¬(p ⊃ q)) = 1 and νM,w1(p ∧ ¬q) = 0
iff νM,w1(p ⊃ q) = 0 and νM,w1(p) = 0 and

νM,w1(¬q) = 0
iff νM,w1(p) = 1 and νM,w1(q) = 0 and νM,w1(p) =

0 and νM,w1(q) = 1

But it is impossible that p and q each be assigned different truth values at the same world in the
same model. Hence, by reductio, it is not the case that νM,w0(¬□(¬(p ⊃ q) ⊃ (p ∧ ¬q))) = 1.
So it’s the case that νM,w0(□(¬(p ⊃ q) ⊃ (p∧¬q))) = 1. Since w0 was an arbitrary world of an
arbitrary K-model, we have proven that ⊨K □(¬(p ⊃ q) ⊃ (p ∧ ¬q)). Q.E.D.

6. (a) Explain in your own words what makes a system of modal propositional logic normal. 2 Points

Recall Definitions (2.1), 2.2 (extension) and 2.3 (normal system) on Handout 3:
Definition 2.3:
A system of modal logic is normal iff it is an extension of K (i.e., iff it is at least as strong as
K).
Definition 2.2:
A system of modal logic, Kn, is an extension of a system Km just in case if Σ ⊢Km A, then
Σ ⊢Kn A. That is, every inference derivable in Km is derivable in Kn, and every theorem of
Km is a theorem of Kn.

(b) When given two systems of normal modal propositional logic, how can you determine
whether one is an extension of the other? 2 Points

Let’s assume that the two systems, call them S1 and S2, are each given with definitions of ⊨,
and of ⊢ in terms of tree rules. Now suppose system S2 is an extension of system S1. Then
we have two options to prove this.
Option 1: We show that every inference derivable in S1 is derivable in S2, and every theorem
of S1 is a theorem of S2. We do this by showing that every derivation of S1 is also a derivation
of S2. This can be achieved by showing that every tree rule in S1 is also a tree rule in S2.
Option 2: If S1 and S1 are each sound and complete, we can assume that every valid
inference in S1 is a valid inference in S2, and every wff valid in S1 is valid in S2. We do this
by showing that every admissible S2-model is also an admissible S1-model (cf. the remarks
on model theory on p. 2 of Handout 3).

————
33 Points
in total7



Exercise Set 3 — Solutions

SE Modality in Logic and Language

Dr. Dirk Kindermann

August 12, 2019

1. 3 PointsExplain the difference between the extension and intension of an expression. Explain what
extensions and intensions are.

The extension of an expression (at a world) can roughly be thought of as that in the world to
which the expression refers. For instance, the extension of a proper name is the individual bearing
the name; the extension of a predicate is the set of individuals to which the predicate applies; the
extension of a sentence is a truth value. For any expression α, we write the extension of α in
world w as JαKw,g.

The intension of an expression is the function mapping a possible world to the expression’s
extension at that possible world. Hence, a sentence’s intension is a function from possible worlds
to truth values. Equivalently, we can think if a sentence’s intension as a set of possible worlds–
those at which the sentence is true. For any expression α, we write the intension of α as λw.JαKw,g (pronounced: ‘the function that assigns to any world w the extension of α in that world’).

2. State and explain in your own words:

(a) What are the semantic types of the extension and intension of a sentence? 2 Points

The semantic type of a sentence’s extension is t – truth value).
The semantic type of a sentence’s intension is ⟨s,t⟩ – a function from possible worlds (s) to
truth values (t).

(b) Explain what an intensional operator is. Give an example of an intensional operator in
German (or your native language) and state its semantic entry. 3 Points

An intensional operator is an expression that operates on the intension of the expression
with which it combines. In our system, an intensional operator is capable of shifting the
world parameter of the semantic value of the expression with which it combines. Two
examples in German:

• JGemäß der Herr-der-Ringe TrilogieKw,g = λp ∈ D⟨s,t⟩. for all worlds w′ that are
as described in the Lord-of-the-Rings trilogy, p(w′) = 1

• JLisa glaubtKw,g = λp ∈D⟨s,t⟩. ∀w′ compatible with what Lisa believes inw: p(w′) =
1

3. 3 PointsConsider the lexical entry for ‘and’ in von Fintel & Heim (2011, p. 6):

(14a) JandKw,g = λu ∈Dt. λv ∈Dt. u = v = 1

Is this entry extensionally equivalent to conjunction in propositional logic? That is, given the
extensions of two sentences as inputs, does the function yield the same extension for the con-
junctive sentence as the conjunction junctor would given two truth values of inputting formulas?
Show why or why not. (Reminder: νJ (A ∧B) = 1 iff νJ (A) = 1 and νJ (B) = 1)

Yes, (14a) is extensionally equivalent to conjunction in propositional logic. For two func-
tions to be extensionally equivalent, they must map the same arguments/inputs to the same
values/outputs. Here is the truth table for ∧ given the arguments u and v:
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u v u ∧ v

1 1 1
1 0 0
0 1 0
0 0 0

Of the four ways of inputting semantic values (1,0) for u and v, the tables shows that only when
u = v = 1 does the function yield 1. In all other cases, it yields 0.

The same is true of (14a), which states that u and v be mapped to 1 only if u = v = 1, and to 0
otherwise. So the functions that are the extensional meaning of and in (14a) and ∧ in classical
propositional logic are equivalent.

4. 4 PointsState the lexical entries for the following expressions, following the entries in (13a-c) in von
Fintel & Heim (2011, p. 6):

(a) JpopularKw,g = λx ∈ De. x is popular in w

(b) JmayorKw,g = λx ∈ De. x is (a) mayor in w

(c) Jgo toKw,g = λx ∈ De. λy ∈ De. y goes to x in w

(d) JlikeKw,g = λx ∈ De. λy ∈ De. y likes x in w

5. 3 PointsGive lexical entries for the following attitude verbs, following the entry for ‘believe’ in von Fintel
& Heim (2011, (33) on p. 20):

(a) JassumeKw,g= λp ∈D⟨s,t⟩. λx ∈De. ∀w′ compatible with x’s assumptions inw: p(w′) = 1

(b) JhopeKw,g = λp ∈ D⟨s,t⟩. λx ∈ De. ∀w′ compatible with x’s hopes in w: p(w′) = 1

(c) JdoubtKw,g = λp ∈ D⟨s,t⟩. λx ∈ De. ∀w′ compatible with x’s doubts in w: p(w′) = 1

6. 4 PointsPossible-worlds analyses of attitude verbs have notorious problems with pairs like the following:

(1) Lisa believes that all mammals are renates.
(2) Lisa doesn’t believe that all mammals are cordates.

(3) Cem knows that 2+2=4.
(4) Cem doesn’t know that π = 3.14159…

Can you explain what the problem here is? [Hint: Think of similarities and differences in
intension of the (simple and complex) expressions in the prejacents.]

[I’m skipping discussion of pairs (1) and (2), since they’re not the main issue here.
You can look up the problem in chapter 9 of my script Einführung in die formale Semantik on
www.dirkkindermann.com/teaching.html.]

In short, the problem with (3) and (4) is that their prejacents have the same intensions. How is
that a problem?

Intuitively, (3) and (4) are not contradictory — it can both be true that Cem knows that 2+2=4
and does not know that π = 3.14159…Now, given the meaning of ‘not’, it can thus be true that
Cem knows that 2+2=4 and false that he knows that π = 3.14159…

Here is the problem on our analysis: Given the principle of compositionality, two complex
expressions differ in meaning only if they either contain different simple expressions or combine
in different ways. With our semantic entry for ‘know’, it’s plausible that ‘Cem knows that’ and
‘Cem does not know that’ combine via Intensional Functional Application with the intensions of
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their prejacents, ‘2+2=4’ and ‘π = 3.14159…’ If (3) is true and unnegated (4) is false, they must
differ in meaning; hence they must differ in meaning because their prejacents differ in intensions.
But do they? Note that ‘2+2=4’ is a necessary truth–it is true at every possible world. So its
intension is the function that maps every possible world to truth. Likewise, ‘π = 3.14159…’ is a
necessary truth; its intension is also the function that maps every possible world to truth. Hence
both prejacents have the same intension (which is sometimes called ‘the necessary proposition’,
since in possible worlds semantics, there is only one necessary proposition). As a result, in our
possible worlds analysis, (3) and unnegated (4) do not differ in meaning, so it cannot be the case
that (3) is true and (4) is false. But this runs counter to our intuitions about the meanings and
possible truth value distribution of (3) and (4).

7. 5 PointsCome up with examples of epistemic, deontic, and circumstantial uses of the necessity verb have
to. Describe the set of worlds that constitutes the understood restrictor in each of your examples.
(This is exercise 3.1 in von Fintel & Heim, 2011, p. 37.)

• Epistemic reading:

[Context: Lisa sees Dorothee’s car in the driveway]

Lisa: ‘Dorothee has to be at home.’

Restrictor set: {w: Dorothee’s car is in the driveway in w}

• Deontic reading:

‘According to veganism, you have to refrain from eating animal products.’

Restrictor set (explicitly given by ‘according to veganism’: {w: w is just like veganism
prescribes}

• Circumstantial reading:

‘A sunflower has to get sunshine to survive.’

Restrictor set of the sentence when evaluated at w: {w’: the laws of nature of w hold in
w’}

8. 3 PointsLet us call an accessibility relation trivial if it makes every world accessible from every world.
R is trivial iff ∀w∀w′ : w′ ∈ R(w). What would the conversational background f have to be
like for the accessibility relation Rf to be trivial in this sense? (This is exercise 3.6 in von Fintel
& Heim, 2011, p. 42.)

Intuitively, the conversational background would have to be one of complete ignorance (if it is
an epistemic conversational background). If it is trivial, it doesn’t restrict the universe (the set of
all worlds) at all; so no possibilities are excluded.

Conversational backgrounds for Kratzer are functions from worlds to sets of propositions; propo-
sitions are sets of worlds. Hence, conversational backgrounds are of type ⟨s, ⟨st,t⟩⟩, functions
from worlds to (characteristic functions of) sets of propositions.

A trivial conversational background maps any world w to the empty set (of propositions), ∅.
Trivial conversational background: λw. λp. p = ∅. (The function that maps world w and
proposition p to 1 iff p is the empty set)

9. 4 PointsKratzer argues that because of sentences like (104) (von Fintel & Heim, 2011, 59), modal auxil-
iaries like ‘must’ are sensitive to two context-dependent parameters (‘doubly relative modality’).

(104) John must pay a fine.
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Provide another example sentence (including a context–cf. von Fintel & Heim (2011, 59-60),
state the modal flavours involved in modal base and ordering source as well as the domain of
quantification that is restricted by modal base and ordering source.

(*) The shop lifter must be sentenced.

The modal base in our example is the proposition that there is a unique person who did the shop
lifting. Its modal flavour is circumstantial (or epistemic).

The ordering source is the set of propositions whose truth is demanded by criminal law. Which
criminal law is relevant is determined by context of utterance of (*): it will have to determine
under which jurisdiction the shop lifting falls.

‘Must’ in (*) thus quantifies over the set of worlds which are the best worlds, given criminal law
(ordering source), of all the worlds that are compatible with there being a unique person who
did the shop lifting (modal base).

————
34 Points
in total
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